Axial piston variable pump
A7VO

Data sheet

Series 63
Sizes NG250 to 500
Nominal pressure 350 bar
Peak pressure 400 bar
Open circuit

Contents
Type code for Standard program 2
Technical data 4
Dimensions size 250 10
Dimensions size 250 High-Speed-Version 12
Dimensions size 355 14
Dimensions size 500 16
DR Pressure control 18
DRG remote pressure control 20
LRD Power control with integrated pressure control 22
LRG with remote pressure control 26
LRDH with hydraulic stroke limiter 28
LRDN with hydraulic stroke limiter 31
HD.D Hydraulic control, pilot pressure dependent 34
HD.D with integrated pressure control 37
HD.G with remote pressure control 38
EP.D Electric control with proportional valve 40
EP.D with integrated pressure control 42
EP.G with remote pressure control 43
Plug 45
Optical swivel angle indicator 46
Electric swivel angle indicator 47
Installation instructions standard program 48
Installation instructions High-Speed-Version 49
General information 52

Features
- Variable axial piston pump with tapered piston rotary group in bent axis design for hydrostatic drives in open circuits
- For operation in mobile and industrial applications
- The flow is proportional to the drive speed and the displacement and steplessly variable from \(q_{\text{max}} \) to \(q_{\text{min}} = 0 \)
- Wide range of controls and adjustment devices
- Compact, robust bearing system for long service life
- Available with Long Life bearings for special fluids and extreme service life requirements
- Pressure control is standard
- Optical or electric swivel angle indicator available
Type code for standard program

<table>
<thead>
<tr>
<th></th>
<th>A7V</th>
<th>O</th>
<th>/</th>
<th>63</th>
<th>–</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
</tr>
</tbody>
</table>

Fluid / Version

<table>
<thead>
<tr>
<th>Fluid / Version</th>
<th>Fluid Type</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral oil and HFD. HFD only in conjunction with Long-Life-Lagerung „L“ (no code)</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>For operation on HFC, special high performance version A4VSO...F see RE 92053</td>
<td>● ● –</td>
<td></td>
</tr>
<tr>
<td>High-Speed-Version (only mineral oil)</td>
<td>● – –</td>
<td>H</td>
</tr>
</tbody>
</table>

Axial piston unit

<table>
<thead>
<tr>
<th>Axial piston unit</th>
<th>Design</th>
<th>Pressure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>02 Bent axis design, variable, nominal pressure 350 bar, peak pressure 400 bar</td>
<td>A7V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drive shaft bearings

<table>
<thead>
<tr>
<th>Drive shaft bearings</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>03 Mechanical bearings (no code)</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>Long-Life-bearings</td>
<td>● ● ●</td>
<td>L</td>
</tr>
</tbody>
</table>

Type of operation

<table>
<thead>
<tr>
<th>Type of operation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>04 Pump, open circuit</td>
<td>O</td>
</tr>
</tbody>
</table>

Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Displacement Vg max [cm³]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>NG28 to 160 see RE 92202</td>
<td>250 355 500</td>
</tr>
</tbody>
</table>

Control devices

<table>
<thead>
<tr>
<th>Control devices</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>06 Pressure control</td>
<td>● ● ● DR</td>
<td>DR</td>
</tr>
<tr>
<td>Pressure control, remotely adjustable</td>
<td>● ● ● DRG</td>
<td>DRG</td>
</tr>
<tr>
<td>Power control with integrated pressure control (fixed setting)</td>
<td>● ● ● LRD</td>
<td>LRD</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg max</td>
<td>Δp = 10 bar</td>
<td>○ ○ ○ LRDH1</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg min</td>
<td>Δp = 25 bar</td>
<td>○ ○ ○ LRDH2</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg max</td>
<td>Δp = 35 bar</td>
<td>○ ○ ○ LRDH3</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg min</td>
<td>Δp = 10 bar</td>
<td>○ ○ ○ LRDN1</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg max</td>
<td>Δp = 25 bar</td>
<td>○ ○ ○ LRDN2</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg min</td>
<td>Δp = 35 bar</td>
<td>○ ○ ○ LRDN3</td>
</tr>
<tr>
<td>with pressure control remotely adjustable</td>
<td>● ● ● LRG</td>
<td>LRG</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg max</td>
<td>Δp = 10 bar</td>
<td>○ ○ ○ LRGH1</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg min</td>
<td>Δp = 25 bar</td>
<td>○ ○ ○ LRGH2</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg max</td>
<td>Δp = 35 bar</td>
<td>○ ○ ○ LRGH3</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg min</td>
<td>Δp = 10 bar</td>
<td>○ ○ ○ LGN1</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg min</td>
<td>Δp = 25 bar</td>
<td>○ ○ ○ LGN2</td>
</tr>
<tr>
<td>hydraulic stroke limiter initial position Vg min</td>
<td>Δp = 35 bar</td>
<td>○ ○ ○ LGN3</td>
</tr>
<tr>
<td>Hydraulic control, pilot pressure dependent, with integrated pressure control (fixed setting)</td>
<td>Δp = 10 bar</td>
<td>○ ○ ○ HD1D</td>
</tr>
<tr>
<td>Hydraulic control, pilot pressure dependent, with integrated pressure control (fixed setting)</td>
<td>Δp = 25 bar</td>
<td>○ ○ ○ HD2D</td>
</tr>
<tr>
<td>Hydraulic control, pilot pressure dependent, with integrated pressure control (fixed setting)</td>
<td>Δp = 35 bar</td>
<td>○ ○ ○ HD3D</td>
</tr>
<tr>
<td>with pressure control, remotely adjustable</td>
<td>Δp = 10 bar</td>
<td>○ ○ ○ HD1G</td>
</tr>
<tr>
<td>with pressure control, remotely adjustable</td>
<td>Δp = 25 bar</td>
<td>○ ○ ○ HD2G</td>
</tr>
<tr>
<td>with pressure control, remotely adjustable</td>
<td>Δp = 35 bar</td>
<td>○ ○ ○ HD3G</td>
</tr>
</tbody>
</table>

Hydraulic control, with electric proportional valve

<table>
<thead>
<tr>
<th>Hydraulic control, with electric proportional valve</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>with integrated pressure control (fixed setting)</td>
<td>Control voltage 12 V</td>
<td>○ ○ ○ EP1D</td>
</tr>
<tr>
<td>with integrated pressure control (fixed setting)</td>
<td>Control voltage 24 V</td>
<td>○ ○ ○ EP2D</td>
</tr>
<tr>
<td>with pressure control, remotely adjustable</td>
<td>Control voltage 12 V</td>
<td>○ ○ ○ EP1G</td>
</tr>
<tr>
<td>with pressure control, remotely adjustable</td>
<td>Control voltage 24 V</td>
<td>○ ○ ○ EP2G</td>
</tr>
</tbody>
</table>

1) recommended for new projects

2) for operation on HFD-fluids please observe RE 29181 (proportional pressure reducing valve type DRE4K)
Type code for standard program

<table>
<thead>
<tr>
<th></th>
<th>A7V</th>
<th>O</th>
<th>/</th>
<th>63</th>
<th>–</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
</tr>
</tbody>
</table>

Series
- 07: Series 6, Index 3

Direction of rotation
- 08: with view on drive shaft
 - clockwise
 - counter clockwise

Seals
- 09: FKM (Fluoro-rubber)

Drive shaft
- 10: Splined shaft to DIN 5480
- Keyed parallel shaft to DIN 6885

Mounting flange
- 11: Similar to ISO 3019-2
 - 4-hole
 - 8-hole

Service line connections
- 12: SAE-flanged port B or A, at rear (metric fixing bolts)
 - SAE flanged port S, at rear (metric fixing bolts)
 - SAE-flanged ports B or A, on opposite side (metric fixing bolts)
 - SAE-flanged port S, on opposite side (metric fixing bolts)

Swivel angle indicator
- 13: Without swivel angle indicator (no code)
- With optical swivel angle indicator
- With electric swivel angle indicator

Note

Exact value for \(V_{g_{\text{min}}}, \) and \(V_{g_{\text{max}}} \) (displacement) must be stated in clear text when ordering (\(V_{g_{\text{min}}} \ldots \text{cm}^3/\text{rev.}, V_{g_{\text{max}}} \ldots \text{cm}^3/\text{rev.} \)).

- Setting range \(V_{g_{\text{min}}}: 0 \) to \(0.2 \times V_{g_{\text{max}}} \)
- \(V_{g_{\text{max}}}: V_{g_{\text{max}}} \) down to \(0.8 \times V_{g_{\text{max}}} \)

- = Available
- = Not available
- = Preferred program
Technical data

Hydraulic fluid

For extensive information on the selection of hydraulic fluids and application conditions please consult our data sheets RE 90220 (mineral oils), RE 90221 (ecologically acceptable fluids) and RE 90223 (HF-fluids).

The variable pump A7VO is not suitable for operation on HFA fluids. When operating on HFD or ecologically acceptable fluids, limitations to the technical data and seals according to RE 90223 and RE 90221 must be observed.

For the sizes 250 and 355 with operation on HFC-fluids, the A4VSO...F must be used. For certain selected HFC fluids the same pressures and speeds are permissible as for operation on mineral oil. See RE 92053.

When ordering, state the fluid to be used in clear text.

Operating viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected in the range

\[\nu_{\text{opt}} = \text{opt. viscosity range } 16 \ldots 36 \text{ mm}^2/\text{s} \]

referred to tank temperature (open circuit).

Limit of viscosity range

For critical operating conditions the following values apply:

\[\nu_{\text{min}} = 10 \text{ mm}^2/\text{s} \]
for short periods (t < 3 min)

\[\nu_{\text{max}} = 1000 \text{ mm}^2/\text{s} \]
for short periods (on cold start maximum operating viscosity of 100 mm\(^2/\text{s}\) should be reached within 15 min)

\[t_{\text{min}} = -25^\circ \text{C} \]
\[t_{\text{max}} = +90^\circ \text{C} \]

Note, that the maximum fluid temperature of 90°C may not be exceeded at any point (e.g. around the bearings). The fluid temperature in the bearing area is influenced by drive speed and pressure, and is typically 12 K higher than the average case drain temperature.

Temperature range

(see selection diagram)

\[t_{\text{min}} = -25^\circ \text{C} \]
\[t_{\text{max}} = +90^\circ \text{C} \]

For detailed information on operation with low temperatures see RE 90300-03-B.

Notes on the selection of hydraulic fluids

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the viscosity lies within the optimum range (\(\nu_{\text{opt}}\)) see shaded section in the selection diagram. We recommend, that the higher viscosity grade is selected in each case.

Example: at an ambient temperature of \(X^\circ \text{C}\) the operating temperature in the tank is 60°C. In the optimum viscosity range (\(\nu_{\text{opt}}\); shaded area), this corresponds to grades VG 46 or VG 68; select: VG 68.

Important:
The case drain temperature is influenced by pressure and speed and is always higher than the tank temperature. However the max. temperature at any point in the system may not exceed 90° C.

If the above conditions cannot be met, due to extreme operating parameters we recommend a housing flushing via port U.

Filtration

The finer the filtration, the better the achieved cleanliness of the fluid and the longer the life of the axial piston pump.

To ensure a reliable functioning of the axial piston unit, a minimum cleanliness class of

20/18/15 acc. to ISO 4406 is necessary.
Technical data

Operating pressure range

Depending on the operating fluid, limitations may apply, see the chapter on hydraulic fluids, page 4.

Pressure at the outlet ports (pressure ports) A or B

Nominal pressure p_{nom} ______________ 350 bar absolute

Peak pressure p_{max} ______________ 400 bar absolute

Total operating period ______________ 300 h

Individual operating period ______________ 1 s

Minimum pressure (in pump outlet) ______________ 10 bar

For a lower pressure, please consult us.

Rate of pressure change R_A ______________ 16000 bar/s

Under pulsating load conditions above 315 bar we recommend the use of a splined shaft (to DIN 5480).

Pressure at the inlet port S (Suction)

Minimum inlet pressure $p_{\text{S min}}$ ______________ 0.8 bar absolute

Maximum inlet pressure $p_{\text{S max}}$ ______________ 8 bar absolute

Minimum inlet pressure

In order to avoid damage to the axial piston pump a certain minimum inlet pressure at the pump's suction port S is necessary. This minimum inlet pressure is dependent on the drive speed and the displacement of the axial piston unit.

Pressure at the outlet ports:

Nominal pressure p_{nom} ______________ 350 bar absolute

Peak pressure p_{max} ______________ 400 bar absolute

Total operating period ______________ 300 h

Individual operating period ______________ 1 s

Minimum pressure (in pump outlet) ______________ 10 bar

For a lower pressure, please consult us.

Rate of pressure change R_A ______________ 16000 bar/s

Under pulsating load conditions above 315 bar we recommend the use of a splined shaft (to DIN 5480).

Pressure at the inlet port S (Suction)

Minimum inlet pressure $p_{\text{S min}}$ ______________ 0.8 bar absolute

Maximum inlet pressure $p_{\text{S max}}$ ______________ 8 bar absolute

Minimum inlet pressure

In order to avoid damage to the axial piston pump a certain minimum inlet pressure at the pump's suction port S is necessary. This minimum inlet pressure is dependent on the drive speed and the displacement of the axial piston unit.

Note

- Maximum speed n_{max}
 (Speed limit, see table of values, page 8)
- Minimum and maximum pressure at port S
- Permissible values for the shaft seal
 (see diagram on page 7)

An increase in inlet pressure results in a higher control begin of the LR-control curve as well as a rise of the $LR.H$- and $LR.N$-pilot pressure characteristics.

Factory setting of the control begin is done at an inlet pressure $p_S = 1$ bar absolute.

Exact details of the shifts in the control curves on request.

Definition

Nominal pressure p_{nom}

The nominal pressure corresponds to the maximum design pressure.

Peak pressure p_{max}

The peak pressure corresponds to the maximum pressure within the individual operating period. The total of the individual operating periods must not exceed the total operating period.

Minimum pressure (in pump outlet)

Minimum pressure in the pump outlet side (port A or B) that is required in order to prevent damage to the axial piston unit.

Rate of pressure change R_A

Maximum permissible pressure build-up and pressure reduction speed with a pressure change over the entire pressure range.

Direction of flow

Direction of rotation, with view on shaft end

clockwise counter clockwise

S to B S to A

Note

- Maximum speed n_{max}
 (Speed limit, see table of values, page 8)
- Minimum and maximum pressure at port S
- Permissible values for the shaft seal
 (see diagram on page 7)

An increase in inlet pressure results in a higher control begin of the LR-control curve as well as a rise of the $LR.H$- and $LR.N$-pilot pressure characteristics.

Factory setting of the control begin is done at an inlet pressure $p_S = 1$ bar absolute.

Exact details of the shifts in the control curves on request.
Technical data

Long-Life-Bearings (L)
For long service life requirements and when using HFD-fluids. Identical external dimensions as units with standard bearings. A retroactive conversion to Long-Life Bearings is possible. It is recommended, that the bearings and housing be flushed via port U.

Bearing flushing
Flushing flows (recommended)

<table>
<thead>
<tr>
<th>NG</th>
<th>250</th>
<th>355</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>qflow (L/min)</td>
<td>10</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Operation in standby (in pressure control mode)
Operation in standby, without external flushing via port U is only permissible for short periods:
- A7VO maximum 15 min at 200 bar
- 3 min at 350 bar
- HA7VO maximum 5 min at 200 bar
- 1 min at 350 bar

For other pressure levels information on request

Influence of drive speed can be neglected

At tank temperature ≤ 50° C

For longer periods of standby operation it is necessary to implement housing flushing via port U.

Flushing flows HA7VO (High-Speed-version)

<table>
<thead>
<tr>
<th>Operating pressure p [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Flushing flows for A7VO same as bearing flushing
Technical data

Shaft seal FKM (Fluoro-rubber)

Permissible case pressure

The service life of the shaft seal is influenced by pump drive speed and case pressure. It is recommended not to exceed the continuous averaged case pressure of 3 bar abs. (max. perm. case pressure 4 bar abs. at reduced speed, see diagram).

The case pressure must be equal to or higher than the external pressure on the shaft seal (in case of the standard version). For the High-Speed-version please consult us.

Special operating conditions may make it necessary to restrict these values.

Important:
- maximum permissible drive speed of variable pump (see table of values, page 8)
- max. permissible case pressure $p_{S\text{ max}} = 4$ bar
- an increase in case pressure results in a higher control begin of the HD- and DR- controls.

Exact details of the shift in control characteristics on request.
Factory setting of the control begin at $p_S = 1$ bar.

Temperature range

The FKM shaft seal is suitable for case temperatures of -25° C to $+90^\circ$C.
Technical data

Table of values (theoretical values, without considering η_{mh} and η_{V}; values rounded off)

<table>
<thead>
<tr>
<th>Size</th>
<th>NG 250</th>
<th>250H</th>
<th>355</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{g_{\text{max}}}^{1)}$</td>
<td>$V_{g_{\text{max}}}^{1)}$</td>
<td>cm³</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>$V_{g_{\text{min}}}^{1)}$</td>
<td>$V_{g_{\text{min}}}^{1)}$</td>
<td>cm³</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Speed maximum $^{2/4)}$ at $V_{g_{\text{max}}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{nom}</td>
<td>rpm</td>
<td>1500</td>
<td>1800</td>
<td>1320</td>
</tr>
<tr>
<td>Speed maximum $^{3/4)}$ at $V_{g} \leq V_{g_{\text{max}}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{max}</td>
<td>rpm</td>
<td>1800</td>
<td>–</td>
<td>1600</td>
</tr>
<tr>
<td>Maximum flow $^{4)}$ at q_{nom} and $\Delta p = 350$ bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q_{V_{\text{nom}}}^{2)}$</td>
<td>L/min</td>
<td>375</td>
<td>450</td>
<td>469</td>
</tr>
<tr>
<td>Maximum power $^{4)}$ at $q_{V_{\text{nom}}}$ and $\Delta p = 350$ bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{nom}</td>
<td>kW</td>
<td>219</td>
<td>262</td>
<td>273</td>
</tr>
<tr>
<td>Torque $^{4)}$ at $V_{g_{\text{max}}}$ and $\Delta p = 350$ bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{max}</td>
<td>Nm</td>
<td>1391</td>
<td>1391</td>
<td>1978</td>
</tr>
<tr>
<td>Rotary stiffness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{min}</td>
<td>Nm/rad</td>
<td>59500</td>
<td>59500</td>
<td>74800</td>
</tr>
<tr>
<td>c_{max}</td>
<td>Nm/rad</td>
<td>181000</td>
<td>181000</td>
<td>262000</td>
</tr>
<tr>
<td>Moment of inertia rotary group</td>
<td>J_{TV}</td>
<td>kgm²</td>
<td>0.061</td>
<td>0.061</td>
</tr>
<tr>
<td>Angular acceleration maximum</td>
<td>α</td>
<td>rad/s²</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>Case volume</td>
<td>V</td>
<td>L</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Weight approx.</td>
<td>m</td>
<td>kg</td>
<td>102</td>
<td>102</td>
</tr>
</tbody>
</table>

1) Standard setting for limitation of the swivel angle. If another setting is required, please state in clear text.

2) Setting range $V_{g_{\text{max}}}^{1)}$: $V_{g_{\text{max}}}^{1)}$ to $0.8 \cdot V_{g_{\text{max}}}^{1)}$

3) Setting range $V_{g_{\text{min}}}^{1)}$: 0 to $0.2 \cdot V_{g_{\text{max}}}^{1)}$

2) Nominal speed in self priming operation with an absolute pressure (p_{S}) of 1 bar at inlet port S and mineral oil with a density of 0.88 kg/L

3) The values apply for $V_{g} \leq V_{g_{\text{max}}}$ or an increase in inlet pressure p_{S} at the inlet port S (see diagram page 5)

4) Depending on the type of fluid, restrictions may be necessary, see chapter hydraulic fluids page 4

Important

Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. More details on limiting values for speed fluctuations, reduction in angular acceleration dependent on the frequency and the permissible starting angular acceleration (below the maximum angular acceleration) can be found in data sheet RE 90261.

Determination of size

- **Flow**

 \[q_{V} = \frac{V_{g} \cdot n \cdot \eta_{V}}{1000} \text{ [L/min]} \]

- **Drive torque**

 \[T = \frac{V_{g} \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} \text{ [Nm]} \]

- **Power**

 \[P = \frac{2\pi \cdot T \cdot n}{60000} = \frac{q_{V} \cdot \Delta p}{600 \cdot \eta_{t}} \text{ [kW]} \]

V_{g} = Geometrical displacement per revolution in cm³

\(\Delta p = \) Differential pressure in bar

\(n = \) Speed in rpm

\(\eta_{V} = \) Volumetric efficiency

\(\eta_{mh} = \) Mechanical-hydraulic efficiency

\(\eta_{t} = \) Overall efficiency ($\eta_{t} = \eta_{V} \cdot \eta_{mh}$)
Technical data

Permissible radial and axial forces on the drive shaft

<table>
<thead>
<tr>
<th>Size</th>
<th>NG</th>
<th>250</th>
<th>355</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial force, maximum ¹) (at $p_{A,B} = 1\text{bar}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_q</td>
<td>$F_{q,\text{max}}$</td>
<td>N</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>Axial force, maximum ²) (at $p_{A,B} = 1\text{bar}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pm F_{a,\text{max}}$</td>
<td>N</td>
<td>4000</td>
<td>5000</td>
<td>6250</td>
</tr>
</tbody>
</table>

¹) When at standstill or pressureless circulation of the axial piston unit. Under pressurized condition higher forces are permissible, please consult us.

²) Maximum permissible axial force at standstill or pressureless circulation of the axial piston unit.

Regarding the permissible axial force, the direction of the force must be taken into consideration:

- $-F_{a\,\text{max}} = \text{increase of bearing life}$
- $+F_{a\,\text{max}} = \text{decrease of bearing life}$

Influence of the radial force F_q on the bearing life

Through a favourable direction of the actuating radial force F_q, the internal load on the bearings can be compensated for and in this manner an optimum on bearing life can be obtained, please consult us.
Dimensions size 250

Ports A (B) and S on opposite sides (02), clockwise rotation
(without control devices)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.
Dimensions size 250
Ports A (B) and S at rear (01)

Drive shafts
Z Splined shaft DIN 5480
W50x2x24x9g
P Parallel keyed shaft
DIN 6885, AS14x9x80

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size(^2)</th>
<th>Peak pressure ([\text{bar}])</th>
<th>State</th>
</tr>
</thead>
</table>
| A, (B) | Pressure outlet (high pressure range) Fixing thread | SAE J518\(^4\)
SAE J518\(^4\) | 1 1/4in M14x2; 19 deep | 400 | O |
| S | Suction (standard pressure range) Fixing thread | SAE J518\(^4\)
DIN 13 | 3 in M16x2; 24 deep | 7 | O |
| U | Flushing | DIN 3852 | M14x1.5; 12 deep | 3 | X |
| R\(_i\) | Case drain | DIN 3852 | M22x1.5; 14 deep | 3 | O |
| R\(_s\) | Case drain | DIN 3852 | M22x1.5; 14 deep | 3 | X |
| M\(_{ax}\), M\(_b\) | Measuring pressure A, B | DIN 3852 | M14x1.5; 12 deep | 400 | X |

\(^2\) For the max. tightening torques the general information on page 52 must be observed
\(^3\) Depending on the application, momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.
\(^4\) Only dimensions to SAE J518
\(O\) = Must be connected (closed on delivery)
\(X\) = Plugged (in normal operation)
Dimensions size 250 High-Speed-Version

Ports A (B) and S on opposite sides (02), clockwise rotation
(without control devices)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.
Dimensions size 250 High-Speed-Version

Ports A (B) and S at rear (01)

Drive shafts

Z Splined shaft DIN 5480
W50x2x24x9g

P Parallel keyed shaft
DIN 6885, AS14x9x80

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size<sup>3</sup></th>
<th>Peak pressure [bar]<sup>3</sup></th>
<th>State</th>
</tr>
</thead>
</table>
| A, (B) | Pressure outlet (high pressure series)
Fixing thread | SAE J518⁴
DIN 13 | 1 1/4in
M14x2; 19 deep | 400 | O

| A', (B') | 2. Pressure outlet (high pressure series)
Fixing thread | SAE J518⁴
DIN 13 | 1 1/4in
M14x2; 19 deep | 400 | X⁵

| S | Suction (standard pressure series)
Fixing thread | SAE J518⁴
DIN 13 | 3 in
M16x2; 24 deep | 3⁶ | O

| S₁ | 2. Suction (standard pressure series)
Fixing thread | SAE J518⁴
DIN 13 | 3 in
M16x2; 24 deep | 3⁶ | X⁷

| U | Flushing | DIN 3852 | M14x1.5; 12 deep | 3 | X⁶

| R₁, R₂ | Case drain | DIN 3852 | M22x1.5; 14 deep | 3 | X⁶

| M_A, M_B | Measuring outlet pressure A, B | DIN 3852 | M14x1.5; 12 deep | 400 | X⁶

¹ For the max. tightening torques the general information on page 52 must be observed
² Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.
³ Only dimensions to SAE J518
⁴ Closed pressure tight with plug M33x2
⁵ Note: suction chamber and leakage chamber are connected inside pump housing, observe permissible pressure load on shaft seal, see page 7
⁶ Closed pressure tight with flange plate
⁷ Both ports are plugged. Leakage chamber is connected with suction chamber. Separate case drain line to tank is not necessary.
O = Must be connected (closed on delivery)
X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.
Dimensions size 355

Ports A (B) and S on opposite sides (02), clockwise rotation
(without control devices)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

M16x2, 21 deep
with ports at rear (01)

M16x2, 24 deep
323 to mounting flange face

* see control devices

View Z clockwise rotation

View Z counter clockwise rotation
Dimensions size 355

Ports A (B) and S at rear (01)

Drive shafts

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size</th>
<th>Peak pressure [bar]</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, (B)</td>
<td>Pressure outlet (high pressure range)</td>
<td>SAE J518(^4)</td>
<td>1 1/2 in M16x2; 21 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Fixing thread</td>
<td>DIN 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Suction (standard pressure range)</td>
<td>SAE J518(^5)</td>
<td>3 1/2 in M16x2; 24 deep</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Fixing thread</td>
<td>DIN 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Flushing</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>R(_1)</td>
<td>Case drain</td>
<td>DIN 3852</td>
<td>M33x2; 18 deep</td>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>R(_2)</td>
<td>Case drain</td>
<td>DIN 3852</td>
<td>M33x2; 18 deep</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>M(_a), M(_b)</td>
<td>Measuring outlet pressure A, B</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^2\) For the max. tightening torques the general information on page 52 must be observed

\(^3\) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

\(^4\) Only dimensions to SAE J518

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)
Dimensions size 500

Ports A (B) and S on opposite sides (02), clockwise rotation
(without control devices)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.
Dimensions size 500

Ports A (B) and S at rear (01)

View Z clockwise rotation

View Z counter clockwise rotation

Drive shafts

Z Splined shaft DIN 5480
W70x3x22x9g

P Parallel keyed shaft
DIN 6885, AS20x12x100

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size (6)</th>
<th>Peak pressure (bar) (3)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, (B)</td>
<td>Pressure outlet (high pressure range) Fixing thread</td>
<td>SAE J518 (4) DIN 13</td>
<td>1 1/2in M16x2, 21 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>Suction (standard pressure range) Fixing thread</td>
<td>SAE J518 (4) DIN 13</td>
<td>4 in M16x2, 21 deep</td>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>U</td>
<td>Flushing</td>
<td>DIN 3852</td>
<td>M18x1.5; 12 deep</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>R1</td>
<td>Case drain</td>
<td>DIN 3852</td>
<td>M33x2; 18 deep</td>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>R2</td>
<td>Case drain</td>
<td>DIN 3852</td>
<td>M33x2; 18 deep</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>M_A, M_b</td>
<td>Measuring outlet pressure A, B</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

(1) Centering bore to DIN 332
(Thread to DIN 13)

2) For the max. tightening torques the general information on page 52 must be observed
3) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.
4) Only dimensions to SAE J518
O = Must be connected (closed on delivery)
X = Plugged (in normal operation)
DR Pressure control

Initial position: $V_{s, \text{max}}$ in pressureless condition

The pressure control limits the maximum pump output pressure within the control range of the pump. This max. pressure level can be set at the integrated control valve. When reaching this preset level, the pump destrokes and supplies only the amount of flow as needed by the users (actuators).

Setting range of the pressure control 50 to 350 bar

Standard setting is 350 bar.

If another setting is required please state in clear text.

Important
- A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the DR control setting.
- The control begin and the DR-control characteristic is influenced by housing pressure. An increase in housing pressure results in a higher control begin and thus a parallel shifting of the control curve (see page 7).
- Operation in standby see page 6.

Characteristic

![Characteristic graph]

Schematic

![Schematic diagram]

Sub assemblies

1. Integrated pressure control valve

Ports for

M Measuring pressure on control piston (plugged)
Dimensions DR

For general dimensions see pages 10 to 17

Clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>385</td>
<td>161</td>
<td>248</td>
<td>297</td>
<td>227</td>
</tr>
<tr>
<td>355</td>
<td>430</td>
<td>175</td>
<td>279</td>
<td>333</td>
<td>257</td>
</tr>
<tr>
<td>500</td>
<td>490</td>
<td>200</td>
<td>306</td>
<td>382</td>
<td>284</td>
</tr>
</tbody>
</table>

Counter clockwise rotation

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size(^2)</th>
<th>Peak pressure [bar](^3)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^2\) For the max. tightening torques the general information on page 52 must be observed

\(^3\) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

X = Plugged (in normal operation)
DRG Pressure control remotely adjustable

Initial position: \(V_{g,\text{max}} \) in pressureless condition

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port \(X_3 \). This relief valve is not included in the supply of the DRG control.

Setting range of the pressure control \(50 \) to \(350 \) bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at \(X_3 \) (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure \(25 \) bar.

As long as the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement. \(V_{g,\text{min}} \).

The differential pressure at the pressure compensator spool (item 1) is normally set at \(25 \) bar, which results in a pilot flow at \(X_3 \) of approx. \(2 \) L/min.

In case another setting (range \(14 \) to \(50 \) bar) is required, please state in clear text when ordering.

As a separate pilot relief valve we recommend:
- DBD 6 (hydraulic) see RE 25402
- DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line length should not exceed \(2 \) m.

Note
- The beginning of control and the DRG control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

<table>
<thead>
<tr>
<th>Operating pressure (p) [bar]</th>
<th>(q_{V,\text{max}})</th>
<th>(q_{V,\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>50</td>
<td>350</td>
</tr>
</tbody>
</table>

Schematic

Sub assemblies

1. Integrated pressure compensator
2. Separate pilot pressure relief valve (not in scope of supply)

Ports for

- \(X_3 \): Separate pressure relief valve
- \(M \): Measuring pressure on control piston (plugged)
Dimensions DRG

General dimensions see page 10 to 17

Clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>385</td>
<td>161</td>
<td>248</td>
<td>380</td>
<td>74</td>
</tr>
<tr>
<td>355</td>
<td>430</td>
<td>175</td>
<td>279</td>
<td>425</td>
<td>82</td>
</tr>
<tr>
<td>500</td>
<td>490</td>
<td>200</td>
<td>306</td>
<td>483</td>
<td>96</td>
</tr>
</tbody>
</table>

Counter clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A₆</th>
<th>A₇</th>
<th>A₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>112</td>
<td>297</td>
<td>227</td>
</tr>
<tr>
<td>355</td>
<td>131</td>
<td>333</td>
<td>257</td>
</tr>
<tr>
<td>500</td>
<td>142</td>
<td>382</td>
<td>284</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ports for</th>
<th>Standard</th>
<th>Size</th>
<th>Peak pressure [bar]</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₃</td>
<td>Separate pressure relief valve</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

2) For the max. tightening torques the general information on 52 must be observed
3) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices or fittings.
O = Must be connected (closed on delivery)
X = Plugged (in normal operation)
LRd Power control with integrated pressure control

Initial position: \(V_{g_{\text{max}}} \) in pressureless condition

Power control

The power control adjusts the pump displacement in relation to the operating pressure in such a manner that a given drive power at constant drive speed is not exceeded.

\[
p_b \cdot V_g = \text{constant (drive power)}
\]

\(p_b \) = operating pressure; \(V_g \) = displacement

This precise control along the hyperbolic control characteristic permits an optimum utilisation of drive power.

The operating pressure acts on a lever mechanism via the measuring spool in the displacement control piston. It is offset by the externally set spring force which acts on the pilot valve and determines the power setting.

When the operating pressure exceeds the set spring force, the power control pilot valve is actuated via the lever mechanism and the pump swivel towards a smaller displacement \(V_{g_{\text{min}}} \). This in turn reduces the effective moment on the lever mechanism and the operating pressure can increase in the same ratio by which the pump output flow is reduced, without exceeding the installed drive power \((p_b \cdot V_g = \text{constant}) \).

Setting range for the control begin of the power control from ______________________50 to 300 bar.

Note
- The control begin and the LR-power control characteristic are influenced by pump inlet pressure. An increase in pump inlet pressure results in a higher control begin (see page 5) and thus a parallel shift of the control characteristic.
- The hydraulic output power (LR-characteristic) is influenced by pump efficiency.

When ordering please state in clear text:
- Drive power \(P \) in kW
- Drive speed \(n \) in rpm
- Maximum flow \(q_{\text{max}} \) in L/min

The integrated pressure control is standard and overrides the power control, description see page 24.

Characteristic

![Characteristics graph](image)

Schematic

Power control with integrated pressure control

![Schematic diagram](image)

Sub assemblies

1. Pressure control
2. Power control

Port for

M Measuring pressure on control piston (plugged)

Dimensions see page 25
LR\(p\) Power control with integrated pressure control

Initial position \(V_{g\,\text{max}}\)

Power control characteristics in kW

NG 250

at 1500 rpm

<table>
<thead>
<tr>
<th>Operating pressure (p) [bar]</th>
<th>Flow (q_v) [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>90</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>250</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>150</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>0</td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating pressure (p) [bar]</th>
<th>Flow (q_v) [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>90</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>250</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>150</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>0</td>
<td>350</td>
</tr>
</tbody>
</table>

NG 500

at 1000 rpm

<table>
<thead>
<tr>
<th>Operating pressure (p) [bar]</th>
<th>Flow (q_v) [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>90</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>250</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>150</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>0</td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating pressure (p) [bar]</th>
<th>Flow (q_v) [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>90</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>250</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>150</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>0</td>
<td>350</td>
</tr>
</tbody>
</table>

NG 355

at 1500 rpm

<table>
<thead>
<tr>
<th>Operating pressure (p) [bar]</th>
<th>Flow (q_v) [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>90</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>250</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>150</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>0</td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating pressure (p) [bar]</th>
<th>Flow (q_v) [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>90</td>
</tr>
<tr>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>250</td>
<td>37</td>
</tr>
<tr>
<td>200</td>
<td>75</td>
</tr>
<tr>
<td>150</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>0</td>
<td>350</td>
</tr>
</tbody>
</table>
LrD with integrated pressure control

Initial position: $V_{g\text{,max}}$ in pressureless condition

The pressure control is overriding the power control. It protects the pump against excessive pressure and consequential damage.

The pressure control valve is integrated into the port plate and can be set externally.

Upon reaching the set pressure level the pump will destroke towards lower displacement.

Setting range of the pressure control: 50 to 350 bar

Standard setting: 350 bar.

If another setting is required please state in clear text.

Note

- A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the pressure control setting.

- The control begin and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher control begin (see page 7) and thus a parallel shift of the characteristic.

- Standby operation see page 6.

Characteristic

<table>
<thead>
<tr>
<th>Flow</th>
<th>Operating pressure p [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_{V_{\text{min}}}$</td>
<td>50</td>
</tr>
<tr>
<td>$q_{V_{\text{max}}}$</td>
<td>350</td>
</tr>
<tr>
<td>Δp_{max}</td>
<td>10 bar</td>
</tr>
</tbody>
</table>

Schematic

Power control with integrated pressure control

Sub assemblies

1. Pressure control
2. Power control
3. Port for M Measuring pressure on control piston (plugged)
Dimensions

General dimensions see page 10 to 17

Clockwise rotation

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size¹</th>
<th>Peak pressure [bar]²</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

¹ For the max. tightening torques the general information on page 52 must be observed

² Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

X = Plugged (in normal operation)
LRG with remotely adjustable pressure control

Initial position: $V_{g_{\text{max}}}$ in pressureless condition

The remotely adjustable pressure control overrides the power control.

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port X_3. This relief valve is not included in the supply of the DRG control.

Setting range of the pressure control ______ 50 to 350 bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at X_3 (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure 25 bar.

As long as the the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement $V_{g_{\text{min}}}$.

Upon reaching the set pressure control level (set pressure at pilot relief valve plus differential pressure at pressure control compensator) the pump will go over to the pressure control mode.

The differential pressure at the pressure compensator spool (item 1) is normally set at 25 bar, which results in a pilot flow at X_3 of approx. 2 L/min.

In case another setting (range 14 to 50 bar) is required, please state in clear text when ordering.

As a separate pilot relief valve we recommend:

- DBD 6 (hydraulic) see RE 25402
- DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line length should not exceed 2 m.

Note

- The beginning of control and the DRG control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

- **Operating pressure p [bar]**
 - $q_{V_{\text{min}}}$
 - $q_{V_{\text{max}}}$

- **Setting range**
 - 50 to 350 bar

- **Δp_{max}**
 - 10 bar

Schematic

Power control with remotely adjustable pressure control

Sub assemblies

1. Integrated pressure control compensator
2. Separate pressure relief valve (not in scope of supply)
3. Power control

Ports for

1. X_3 Separate pressure relief valve
2. M Measuring pressure on control piston (plugged)
Dimensions LRG

General dimensions see page 10 to 17

Clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>385</td>
<td>170</td>
<td>248</td>
<td>380</td>
<td>74</td>
</tr>
<tr>
<td>355</td>
<td>430</td>
<td>175</td>
<td>279</td>
<td>425</td>
<td>82</td>
</tr>
<tr>
<td>500</td>
<td>490</td>
<td>200</td>
<td>306</td>
<td>483</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NG</th>
<th>A₆</th>
<th>A₇</th>
<th>A₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>112</td>
<td>297</td>
<td>227</td>
</tr>
<tr>
<td>355</td>
<td>131</td>
<td>333</td>
<td>257</td>
</tr>
<tr>
<td>500</td>
<td>142</td>
<td>382</td>
<td>284</td>
</tr>
</tbody>
</table>

Counter clockwise rotation

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ports for</th>
<th>Standard</th>
<th>Size<sup>a</sup></th>
<th>Peak pressure [bar]<sup>b</sup></th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₃</td>
<td>Separate pressure relief valve</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

^a For the max. tightening torques the general information on 52 must be observed

^b Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices or fittings.

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)
LRDH with hydraulic stroke limitation

Initial position: \(V_{g_{\text{max}}} \) in pressureless condition

The hydraulic stroke limitation is used for infinite adjustment of the displacement from \(V_{g_{\text{max}}} \) bis \(V_{g_{\text{min}}} \).

It is overridden by the power control.

The displacement is set by the pilot pressure applied at port \(X_1\).

Maximum permissible pilot pressure \(100 \text{ bar}\)

The hydraulic stroke limitation takes the required control pressure from the pump output pressure. It must be noted, that the pump operating pressure must be at least 40 bar.

If the pressure is lower, the pump must be supplied with an external control pressure of at least 40 bar into port \(X_2\).

The control begin is adjustable.

Control begin (bar), please state in clear text when ordering.

Note

- The control begin and the LRDH-control characteristic are influenced by pump inlet pressure. An increase in pump inlet pressure results in a higher control begin (see page 5) and thus a parallel shift of the control characteristic.

Schematic

Power control with integrated pressure control and hydraulic stroke limitation H

![Schematic Diagram](image)

Sub assemblies

1. Pressure control
2. Power control
3. Hydraulic stroke limitation H

Ports for

- \(X_1\) Pilot pressure
- \(X_2\) External control pressure (plugged)
- \(M\) Measuring pressure on control piston (plugged)

Dimensions see page 30
LRD/H with hydraulic stroke limitation

Characteristics

H1 Δp_{st} for hydraulic stroke limitation _______ 10 bar
Control begin adjustable _________________ 2 to 20 bar
Standard setting of control begin _______________ 5 bar

![Graph H1](image)

H2 Δp_{st} for hydraulic stroke limitation __________ 25 bar
Control begin adjustable _________________ 5 to 50 bar
Standard setting of control begin _______________ 10 bar

![Graph H2](image)

H3 Δp_{st} for hydraulic stroke limitation __________ 35 bar
Control begin adjustable _________________ 7 to 50 bar
Standard setting of control begin _______________ 10 bar

![Graph H3](image)
Dimensions LRDH

General dimensions see page 10 to 17

Clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>385</td>
<td>188</td>
<td>248</td>
<td>370</td>
<td>144</td>
</tr>
<tr>
<td>355</td>
<td>432</td>
<td>203</td>
<td>279</td>
<td>416</td>
<td>157</td>
</tr>
<tr>
<td>500</td>
<td>490</td>
<td>215</td>
<td>306</td>
<td>470</td>
<td>169</td>
</tr>
</tbody>
</table>

Counter clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A4</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>327</td>
<td>123</td>
<td>49</td>
<td>297</td>
<td>227</td>
</tr>
<tr>
<td>355</td>
<td>366</td>
<td>137</td>
<td>54</td>
<td>333</td>
<td>257</td>
</tr>
<tr>
<td>500</td>
<td>417</td>
<td>148</td>
<td>61.5</td>
<td>382</td>
<td>284</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ports for</th>
<th>Standard</th>
<th>Size</th>
<th>Peak pressure [bar]</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Pilot pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>100</td>
<td>O</td>
</tr>
<tr>
<td>X2</td>
<td>External control pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep (NG250 a. 355)</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN 3852</td>
<td>M18x1.5; 12 deep (NG500)</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

2) For the max. tightening torques the general information on 52 must be observed

3) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices or fittings.

O = Must be connected (closed on delivery)
X = Plugged (in normal operation)
LrdN with hydraulic stroke limitation

Initial position: $V_{\text{g min}}$ in pressureless condition

The hydraulic stroke limitation is used for infinite adjustment of the displacement from $V_{\text{g min}}$ to $V_{\text{g max}}$.

It is overridden by the power control.

Displacement is set by the pilot pressure applied at port X_1.

Maximum permissible pilot pressure $p_{\text{max}} = 100$ bar

A minimum pressure of 40 bar is required for hydraulic stroke limitation. The necessary control fluid is taken from the pump outlet pressure side.

An external control pressure is not required when the operating pressure > 40 bar and $V_{\text{g min}} > 0$. In this case the port X_2 must be plugged prior to commissioning. Otherwise an external control pressure source of at least 40 bar must be connected to port X_2.

The control begin is adjustable.

Control begin (bar), please state in clear text when ordering.

Note

- The control begin and the LRDN-control characteristic are influenced by pump inlet pressure. An increase in pump inlet pressure results in a higher control begin (see page 5) and thus a parallel shift of the control characteristic.

Schematic

Power control with integrated pressure control and hydraulic stroke limitation N

![Schematic Diagram]

Sub assemblies

1. Pressure control
2. Power control
3. Hydraulic stroke limitation N

Ports for

- X_1: Pilot pressure
- X_2: External control pressure
- M: Measuring of pressure on control piston (plugged)

Dimensions see page 33
LrdN with hydraulic stroke limitation

Characteristics

N1 Δp_{St} for hydraulic stroke limitation ________ 10 bar
Control begin adjustable ___________________ 2 to 20 bar
Standard setting of control begin _____________ 5 bar

N2 Δp_{St} for hydraulic stroke limitation ________ 25 bar
Control begin adjustable ___________________ 5 to 50 bar
Standard setting of control begin _____________ 10 bar

N3 Δp_{St} for hydraulic stroke limitation ________ 35 bar
Control begin adjustable ___________________ 7 to 50 bar
Standard setting of control begin _____________ 10 bar
Clockwise rotation

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Ports for</th>
<th>Standard</th>
<th>Size</th>
<th>Peak pressure [bar]</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Pilot pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>100</td>
<td>O</td>
</tr>
<tr>
<td>X2</td>
<td>External control pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep (NG250 a. 355)</td>
<td>400</td>
<td>O⁵</td>
</tr>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep (NG500)</td>
<td>400</td>
<td>O⁵</td>
</tr>
</tbody>
</table>

²) For the max. tightening torques the general information on page 52 must be observed

³) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴) If no external control pressure is connected, port X2 must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Dimensions LRDN

General dimensions see page 10 to 17

Before finalizing your design, request a binding installation drawing. Dimensions in mm.
HD.p Hydraulic control, pilot pressure dependent

Initial position: $V_{g\text{,min}}$ in pressureless condition

The hydraulic pilot pressure dependent control enables an infinite adjustment of the pump displacement in accordance with the applied pilot pressure signal. The displacement setting is proportional to the pilot pressure in port X_1.

A minimum control pressure of 40 bar is required. The necessary control fluid is taken from the pump outlet pressure side.

An external control pressure is not required when the operating pressure > 40 bar and $V_{g\text{,min}} > 0$. In this case the port X_2 must be plugged prior to commissioning. Otherwise an external control pressure of at least 40 bar must be connected to port X_2.

Maximum permissible pilot pressure $p_{St} \leq 100$ bar

The control begin is adjustable.

Control begin (bar), please state in clear text when ordering.

Note

- The beginning of control and the HD control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.

Integrated pressure control is standard. Description see page 37

Note

The spring return feature in the control unit is not a safety device

The spool valve inside the control unit can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e.g., immediate stop).

Schematic

Hydraulic control, pilot pressure dependent with integrated pressure control

Sub assemblies

1. Pressure control
6. HD-pilot valve

Ports for

X_1
Pilot pressure
X_2
External control pressure
M
Measuring pressure on control piston

Dimensions see page 36
HD.Δ Hydraulic control, pilot pressure dependent

Characteristics

HD1Δ
Δpₘₐₓ: 10 bar
Control begin adjustable: 2 to 20 bar
Standard setting of control begin: 5 bar

HD2Δ
Δpₘₓ: 25 bar
Control begin adjustable: 5 to 50 bar
Standard setting of control begin: 10 bar

HD3Δ
Δpₘₓ: 35 bar
Control begin adjustable: 7 to 50 bar
Standard setting of control begin: 10 bar
Dimensions HD_d

General dimensions see page 10 to 17

Clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>385</td>
<td>161</td>
<td>275</td>
<td>49</td>
<td>210</td>
</tr>
<tr>
<td>355</td>
<td>432</td>
<td>181</td>
<td>300</td>
<td>54</td>
<td>234</td>
</tr>
<tr>
<td>500</td>
<td>492</td>
<td>200</td>
<td>325</td>
<td>61.5</td>
<td>258</td>
</tr>
</tbody>
</table>

Counter clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A5</th>
<th>A6</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>248</td>
<td>248</td>
<td>276</td>
</tr>
<tr>
<td>355</td>
<td>278</td>
<td>275</td>
<td>315</td>
</tr>
<tr>
<td>500</td>
<td>322</td>
<td>300</td>
<td>359</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NG</th>
<th>A12</th>
<th>A13</th>
<th>A14</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>377</td>
<td>116</td>
<td>14</td>
</tr>
<tr>
<td>355</td>
<td>425</td>
<td>132</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>483</td>
<td>144</td>
<td>20</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size (^3)</th>
<th>Peak pressure [^\text{bar}] (^4)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Pilot pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>100</td>
<td>O</td>
</tr>
<tr>
<td>X_2</td>
<td>External control pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep (NG250 a. 355)</td>
<td>400</td>
<td>O (^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN 3852</td>
<td>M18x1.5; 12 deep (NG500)</td>
<td>400</td>
<td>O (^4)</td>
</tr>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^3\) For the max. tightening torques the general information on page 52 must be observed

\(^4\) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

\(^4\) If no external control pressure is connected, port X_2 must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)
HD.D with integrated pressure control

Initial position: $V_{g\ min}$ in pressureless condition

The pressure control overrides the HD-function i.e. below the setting of the pressure control the HD-function can be operated.

It protects the pump against excessive pressure and subsequent damage.

The pressure control valve is integrated into the port plate and can be set externally.

Upon reaching the set pressure control level the pump will swivel towards a lower displacement.

Setting range of the pressure control

- 50 to 350 bar
- Standard setting at 350 bar.

If a different setting is required, please state in clear text.

A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the pressure control setting.

Note

- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

<table>
<thead>
<tr>
<th>Operating pressure p [bar]</th>
<th>Setting range of integr. press. control</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>$q_{V\ min}$ to $q_{V\ max}$</td>
</tr>
<tr>
<td>350</td>
<td>10 bar</td>
</tr>
</tbody>
</table>

Flow

Hydraulic control, pilot pressure dependent with integrated pressure control

Sub assemblies

- 1 Pressure control
- 6 HD-Pilot valve

Ports for

- X_1 Pilot pressure
- X_2 External control pressure
- M Measuring pressure on control piston (plugged)

Dimensions see page 39
HD.G with remotely adjustable pressure control

Initial position: $V_{g_{\text{min}}}$ in pressureless condition

The pressure control overrides the HD function.

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port X_3. This relief valve is not included in the supply of the DRG control.

Setting range of the pressure control: 50 to 350 bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at X_3 (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure 25 bar.

As long as the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement $V_{g_{\text{min}}}$.

Upon reaching the set pressure control level (set pressure at pilot relief valve plus differential pressure at pressure control compensator) the pump will go over to the pressure control mode.

The differential pressure at the pressure compensator spool (item 1) is normally set at 25 bar, which results in a pilot flow at X_3 of approx. 2 L/min.

In case another setting (range 14 to 50 bar) is required, please state in clear text when ordering.

As a separate pilot relief valve we recommend:

- DBD 6 (hydraulic) see RE 25402
- DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line length should not exceed 2 m.

Note

- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

<table>
<thead>
<tr>
<th>p_{max}</th>
<th>$q_{V_{\text{min}}}$</th>
<th>$q_{V_{\text{max}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 bar</td>
<td>50</td>
<td>350</td>
</tr>
</tbody>
</table>

Schematic

Hydraulic control, pilot pressure dependent with integrated pressure control

Sub assemblies

1. Integrated pressure control compensator
2. Separate pressure relief valve (not in scope of supply)
6. HD-pilot valve

Ports for

- X_1: Pilot pressure
- X_2: External control pressure
- X_3: Separate pressure relief valve (for HDG)
- M: Measuring of pressure on control piston (plugged)

Dimensions see page 39
Dimensions HD.D and HD.G

General dimensions see page 10 to 17

Clockwise rotation

![Clockwise rotation diagram]

<table>
<thead>
<tr>
<th>NG</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>385</td>
<td>161</td>
<td>275</td>
<td>49</td>
<td>210</td>
</tr>
<tr>
<td>355</td>
<td>432</td>
<td>181</td>
<td>300</td>
<td>54</td>
<td>234</td>
</tr>
<tr>
<td>500</td>
<td>492</td>
<td>200</td>
<td>325</td>
<td>61.5</td>
<td>258</td>
</tr>
</tbody>
</table>

Counter clockwise rotation

![Counter clockwise rotation diagram]

<table>
<thead>
<tr>
<th>NG</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>248</td>
<td>248</td>
<td>276</td>
<td>380</td>
<td>112</td>
</tr>
<tr>
<td>355</td>
<td>278</td>
<td>275</td>
<td>315</td>
<td>425</td>
<td>131</td>
</tr>
<tr>
<td>500</td>
<td>322</td>
<td>300</td>
<td>359</td>
<td>483</td>
<td>142</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size</th>
<th>Peak pressure [bar]</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>Pilot pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>100</td>
<td>O</td>
</tr>
<tr>
<td>X₂</td>
<td>External control pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep (NG250 a. 355)</td>
<td>400</td>
<td>O⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIN 3852</td>
<td>M18x1.5; 12 deep (NG500)</td>
<td>400</td>
</tr>
<tr>
<td>X₃ (for HDG)</td>
<td>Separate pressure relief valve</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td>M</td>
<td>Measuring of pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
</tbody>
</table>

³ For the max. tightening torques the general information on page 52 must be observed

³ Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴ If no external control pressure is connected, port X₂ must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)
EP₃ Electric control with proportional valve

Initial position: Vgₘᵟᵣ in pressureless condition

The electro-hydraulic control with proportional valve enables a stepless adjustment of the pump displacement dependent on an electric current signal.

The displacement is proportional to the current signal to the solenoid of a proportional pressure reducing valve DRE4K (see RE 29181), i.e. an increasing current signal results in an increasing displacement.

A minimum control pressure of 40 bar is required. The necessary control fluid is taken from the pump outlet pressure side.

An external control pressure is not required when the operating pressure > 40 bar and Vgₘᵟᵣ > 0. In this case the port X₂ must be plugged prior to commissioning. Otherwise an external control pressure of at least 40 bar must be connected to port X₂.

A pilot pressure of 30 bar is required at port P to actuate the proportional valve DRE4K.

Pilot pressure at port P

Required pₘᵟᵣ _______________________________ 30 bar
pₘᵟₓ _______________________________ 100 bar

Technical data proportional-press. reducing valve

<table>
<thead>
<tr>
<th></th>
<th>EP1</th>
<th>EP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage (DC)</td>
<td>12V (±20%)</td>
<td>24V (±20%)</td>
</tr>
<tr>
<td>Control current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control begin at Vgₘᵟᵣ</td>
<td>900 mA</td>
<td>450 mA</td>
</tr>
<tr>
<td>Control end at Vgₘᵟₓ</td>
<td>1400 mA</td>
<td>700 mA</td>
</tr>
<tr>
<td>Current limit</td>
<td>2,2 A</td>
<td>1,0 A</td>
</tr>
<tr>
<td>Nom. resistance (at 20°C)</td>
<td>2,4 Ω</td>
<td>12 Ω</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Type of protection (HIRSCHMANN)</td>
<td>IP65</td>
<td>IP65</td>
</tr>
</tbody>
</table>

Various amplifiers for control of the proportional valve are available in the Rexroth program, see RE 29181.

Integrated pressure control EPD is standard and overrides the EP function. Description see page 43.

Important

- For operation on HF-fluids please observe the information in RE 29181 (Proportional-pressure reducing valve Type DRE4K).
- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Type of protection proportional valve to IP65

Note

The spring return feature in the control unit is not a safety device

The spool valve inside the control unit can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e.g. immediate stop).
EP.D Electric control with proportional valve

Characteristic

- **EP2**
 - 800
 - 600
 - 400
 - 200
 - 0

- **EP1**
 - 1600
 - 1200
 - 800
 - 400
 - 0

<table>
<thead>
<tr>
<th>Control current [mA]</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement Vg/Vgmax</td>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1</td>
</tr>
</tbody>
</table>

Schematic

Electric control with proportional pressure reducing valve

Sub assemblies

1. Pressure control
2. Pilot valve
3. Proportional pressure reducing valve (see RE 29181)
 - incl. conductor box (Hirschmann plug without suppressor diode) see page 50

Ports for

- P Pilot pressure
- X2 External control pressure
- M Measuring pressure on control piston (plugged)
- MS Measuring pilot pressure (plugged)

Dimensions see page 42
Dimensions EP, P

Clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
<th>A₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>385</td>
<td>161</td>
<td>275</td>
<td>115</td>
<td>248</td>
<td>276</td>
</tr>
<tr>
<td>355</td>
<td>432</td>
<td>181</td>
<td>300</td>
<td>116</td>
<td>275</td>
<td>315</td>
</tr>
<tr>
<td>500</td>
<td>492</td>
<td>200</td>
<td>325</td>
<td>123</td>
<td>300</td>
<td>359</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NG</th>
<th>A₇</th>
<th>A₈</th>
<th>A₉</th>
<th>A₁₀</th>
<th>A₁₁</th>
<th>A₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>238</td>
<td>241</td>
<td>36</td>
<td>112</td>
<td>380</td>
<td>74</td>
</tr>
<tr>
<td>355</td>
<td>268</td>
<td>286</td>
<td>36</td>
<td>131</td>
<td>425</td>
<td>82</td>
</tr>
<tr>
<td>500</td>
<td>294</td>
<td>328</td>
<td>43</td>
<td>142</td>
<td>483</td>
<td>96</td>
</tr>
</tbody>
</table>

Counter clockwise rotation

<table>
<thead>
<tr>
<th>NG</th>
<th>A₁₃</th>
<th>A₁₄</th>
<th>A₁₅</th>
<th>A₁₆</th>
<th>A₁₇</th>
<th>A₁₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>377</td>
<td>116</td>
<td>14</td>
<td>248</td>
<td>210</td>
<td>49</td>
</tr>
<tr>
<td>355</td>
<td>425</td>
<td>132</td>
<td>20</td>
<td>278</td>
<td>234</td>
<td>54</td>
</tr>
<tr>
<td>500</td>
<td>483</td>
<td>144</td>
<td>20</td>
<td>322</td>
<td>258</td>
<td>61.5</td>
</tr>
</tbody>
</table>

1) Cable connection M16x1.5 for cable diameter 4.5 to 10 mm

Plug description and dimensions see page 50

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size</th>
<th>Peak pressure (bar)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Pilot pressure for proportional valve</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>100</td>
<td>O</td>
</tr>
<tr>
<td>X₂</td>
<td>External control pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep (NG250 a. 355)</td>
<td>400</td>
<td>O ²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN 3852</td>
<td>M18x1.5; 12 deep (NG500)</td>
<td>400</td>
<td>O ³</td>
</tr>
<tr>
<td>M</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td>Mₛ</td>
<td>Measuring pilot pressure</td>
<td>DIN 3852</td>
<td>M14x1.5; 12 deep</td>
<td>100</td>
<td>X</td>
</tr>
</tbody>
</table>

²) For the max. tightening torques the general information on page 52 must be observed

³) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

⁴) If no external control pressure is connected, port X₂ must be plugged

O = Must be connected (closed on delivery)
X = Plugged (in normal operation)
EP.D with integrated pressure control

Initial position: $V_g\min$ in pressureless condition

The pressure control overrides the EP-function i.e. below the setting of the pressure control the EP-function can be operated.

It protects the pump against excessive pressure and subsequent damage.

The pressure control valve is integrated into the port plate and can be set externally.

Upon reaching the set pressure control level the pump will swivel towards a lower displacement.

Setting range of the pressure control: 50 to 350 bar
Standard setting at 350 bar.

If a different setting is required, please state in clear text.

A recommended main line relief valve in the system to safeguard against excessive pressure spikes must have a cracking pressure at least 20 bar above the pressure control setting.

Note
- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic
- Standby operation see page 6.

Characteristic

Schematic

Electric control with proportional pressure reducing valve

Sub assemblies
1 Pressure control
7 Pilot valve
8 Proportional pressure reducing valve incl. conductor box (Hirschmann plug without suppressor diode) see page 46

Ports for
P Pilot pressure
X_2 External control pressure
M Measuring pressure on control piston (plugged)
M_{St} Measuring pilot pressure (plugged)

Dimensions see page 45
EP.G with remotely adjustable pressure control

Initial position: $V_{g\text{min}}$ in pressureless condition

The pressure control overrides the EP- function.

In order to obtain a remote adjustment of the pressure control level a separate pilot pressure relief (item 2) valve must be connected to port X_3. This relief valve must be ordered separately to the DRG control.

Setting range of the pressure control _________ 50 to 350 bar

The spring force on the pressure compensator spool causes a differential pressure between pump output pressure and pressure at X_3 (as soon as the relief valve opens and the pressure control function takes place). Standard setting of this differential pressure 25 bar.

As long as the the pressure is below the set pressure of the relief valve, the pressures on both sides of the pressure compensator spool are equal and the additional spring force keeps this spool in a shifted position (Spool in equilibrium).

As soon as the set pressure of the relief valve is reached, this valve will start to open and the pilot flow will result in a differential pressure over the compensator spool, which causes this spool to shift and brings the pump to a smaller displacement $V_{g\text{min}}$.

Upon reaching the set pressure control level (set pressure at pilot relief valve plus differential pressure at pressure control compensator) the pump will go over to the pressure control mode.

The differential pressure at the pressure compensator spool (item 1) is normally set at 25 bar, which results in a pilot flow at X_3 of approx. 2 L/min.

In case another setting (range 14 to 50 bar) is required, please state in clear text when ordering.

As a separate pilot relief valve we recommend:

- DBD 6 (hydraulic) see RE 25402
- DBETR-SO 437 with dampened spool (electric) see RE 29166

The max. line length should not exceed 2 m.

Note

- The beginning of control and the pressure control characteristic are influenced by housing pressure. An increase in housing pressure results in a higher beginning of control (see page 7) and thus a parallel shift of the control characteristic.
- Standby operation see page 6.

Characteristic

![Characteristic Diagram]

Schematic

Electric control with proportional pressure reducing valve and remotely adjustable pressure control

![Schematic Diagram]

Sub assemblies

1. Integrated pressure control compensator
2. Separate pressure relief valve (not in scope of supply)
7. Pilot valve
8. Proportional pressure reducing valve

Ports for

- P Pilot pressure for proportional valve
- X_2 External control pressure
- X_3 Separate pressure relief valve (EPG)
- M Measuring pressure on control piston (plugged)
- M_8 Measuring pilot pressure (plugged)

Dimensions see page 45
Dimensions EP.D and EP.G

General dimensions see page 10 to 17

Clockwise rotation

Counter clockwise rotation

Ports

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Size</th>
<th>Peak pressure [bar]</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Pilot pressure for proportional valve</td>
<td>DIN 3852 M14x1.5; 12 deep</td>
<td>100</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>X₂</td>
<td>External control pressure</td>
<td>DIN 3852 M14x1.5; 12 deep (NG250 a, 355)</td>
<td>400</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M (for EPG)</td>
<td>Separate pressure relief valve</td>
<td>DIN 3852 M14x1.5; 12 deep</td>
<td>400</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Mst</td>
<td>Measuring pressure on control piston</td>
<td>DIN 3852 M14x1.5; 12 deep</td>
<td>400</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measuring pilot pressure</td>
<td>DIN 3852 M14x1.5; 12 deep</td>
<td>100</td>
<td>X</td>
</tr>
</tbody>
</table>

1) Pressure control (or differential pressure EPG)

2) For the max. tightening torques the general information on page 52 must be observed

3) Depending on the application momentary pressure spikes can occur. Take this into consideration when selecting the measuring devices and fittings.

4) If no external control pressure is connected, port X₂ must be plugged

O = Must be connected (closed on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.
Visual swivel angle indicator

The swivel angle is indicated by a pin at the side of the port plate (the cap nut must be removed).

The protruding length of the pin varies in accordance with the position of the lens plate.

The pump is at zero if the pin is flush with the port plate.

The length of the pin is approx. 8 mm when swivelled to max. angle V_g_{max}.

Schematic example LRD – initial position V_g_{max}

![Schematic diagram]

Dimensions

General dimensions see page 10 to 17

<table>
<thead>
<tr>
<th>NG</th>
<th>A_1</th>
<th>A_2</th>
<th>A_4</th>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>136.5</td>
<td>73</td>
<td>238</td>
<td>11</td>
</tr>
<tr>
<td>355</td>
<td>159.5</td>
<td>84</td>
<td>266</td>
<td>11</td>
</tr>
<tr>
<td>500</td>
<td>172.5</td>
<td>89</td>
<td>309</td>
<td>11</td>
</tr>
</tbody>
</table>

* Dimension to remove the cap nut
Electric swivel angle indicator

In this case the pump swivel angle is indicated via an inductive position transducer.

It converts the displacement of the control device into an electrical signal. This signal can be used to feed the value of swivel angle to an amplifier card for example.

Inductive transducer Type IW9 – 03 – 01

Schematic example EPD – initial position \(V_{g_{\text{min}}} \)

Dimensions

General dimensions see page 10 to 17

Sub assemblies

9 Inductive transducer IW9-03-01
 with conductor box (mating plug) Hirschmann plug without suppressor diode,
 with cable connection M16x1.5 for cable diameter 4.5 to 10 mm
 Plug description and dimensions see page 50
Installation instructions standard version

General
During commissioning and operation the axial piston unit must be full with fluid at all times and must be deaerated. This is also important after prolonged periods of standstill since the system can empty itself via the hydraulic lines. The leakage fluid in the housing must be drained to tank via the highest positioned case drain port. Under all operating conditions the case drain line and the suction line inside the reservoir must be below the minimum fluid level. The minimum inlet pressure at port S may not fall below 0.8 bar absolute.

Installation position
See examples below. Further installation positions are possible, please consult us.

Mounting below the reservoir (standard)
Pump below the minimum reservoir fluid level
Recommended installation position: 1 and 2

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Deaerate</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>R₁ (L₁)</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>R₂ (L₂)</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td>R₃ (L₃)</td>
</tr>
</tbody>
</table>

Mounting above the reservoir

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Deaerate</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>–</td>
<td>R₁ (L₁)</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>R₂ (L₂)</td>
</tr>
</tbody>
</table>
Installation instructions High-Speed-version

General
During commissioning and operation the axial piston unit must be full with fluid at all times and must be deaerated. This is also important after prolonged periods of standstill since the system can empty itself via the hydraulic lines.
The leakage chamber and suction chamber are connected inside the pump housing. A case drain line to tank is not necessary.
The suction line inside the reservoir must end up below the minimum fluid level under all operating conditions.
The minimum inlet pressure at port S may not fall below 0.8 bar absolute.

Installation position
See examples below. Further installation positions are possible, please consult us

Mounting below the reservoir (standard)
Pump below the minimum reservoir fluid level
Recommended installation position: 1 and 2.

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Deaerate</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R₁</td>
<td>S (L₁)</td>
</tr>
<tr>
<td>2</td>
<td>R₂</td>
<td>S (L₁)</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td>S (L₁)</td>
</tr>
</tbody>
</table>
Plug

On EP-control and electric swivel angle indicator E

HIRSCHMANN DIN EN 175 301-803-A /ISO 4400

Without bi-directional suppressor diode

Type of protection to DIN/EN 60529: IP65

The sealing ring in the cable connection is suitable for a cable diameter of 4.5 mm to 10 mm.

The HIRSCHMANN-plug is included in the delivery of the pump.

Fastening screw M3
Tightening torque: $M_a = 0.5 \text{ Nm}$

Cable connection M16x1.5
Tightening torque: $M_a = 1.5 - 2.5 \text{ Nm}$
Notes
Safety information

- The pump A7VO was designed for operation in open loop circuits
- Systems design, installation and commissioning requires trained technicians or tradesmen.
- All hydraulic ports can only be used for the fastening of hydraulic service lines.
- During and shortly after operation of a pump the housing and especially a solenoid can be extremely hot, avoid being burned; take suitable safety measures (wear protective clothing).
- Dependent on the operating conditions of the axial piston pump (operating pressure, fluid temperature) deviations in the performance curves can occur.
- Pressure ports:
 All materials and port threads are selected and designed in such a manner, that they can withstand the peak pressures.
 The machine and system manufacturer must ensure, that all connecting elements and hydraulic lines are suitable for the actual operating conditions (pressures, flow, fluid, temperature) in accordance with the necessary safety factors.
- All given data and information must be adhered to.
- The product has not been released as a component in the safety concept of a total machine system acc. to DIN EN ISO 13849.
- The following tightening torques are valid:
 - Female threads in the axial piston unit:
 the maximum permissible tightening torques $M_{G_{\text{max}}}$ are maximum values for the female threads in the pump casting and may not be exceeded. For values see table below.
 - Fittings:
 please comply with the manufacturer’s information regarding the max. permissible tightening torques for the used fittings.
 - Fastening bolts:
 for fastening bolts to DIN 13 we recommend to check the permissible tightening torques in each individual case to VDI 2230.
 - Plugs:
 for the metal plugs, supplied with the axial piston unit the following min. required tightening torques M_v apply (see table)

<table>
<thead>
<tr>
<th>Port thread size</th>
<th>Max. perm. tightening torque in female threads $M_{G_{\text{max}}}$</th>
<th>Required tightening torque of plugs or fittings M_v</th>
<th>Across the flats in Allan screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>M14x1.5 DIN 3852</td>
<td>80 Nm</td>
<td>35 Nm</td>
<td>6 mm</td>
</tr>
<tr>
<td>M18x1.5 DIN 3852</td>
<td>140 Nm</td>
<td>60 Nm</td>
<td>8 mm</td>
</tr>
<tr>
<td>M22x1.5 DIN 3852</td>
<td>210 Nm</td>
<td>80 Nm</td>
<td>10 mm</td>
</tr>
<tr>
<td>M33x2 DIN 3852</td>
<td>540 Nm</td>
<td>225 Nm</td>
<td>17 mm</td>
</tr>
</tbody>
</table>